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The competition between impact erosion and impact supply of 
volatiles to planetary atmospheres can determine whether a planet 
or satellite accumulates an atmosphere. In the absence of other 
processes (e.g., outgassing), we find either that a planetary atmo- 
sphere should be thick, or that there should be no atmosphere at 
all. The boundary between the two extreme cases is set by the 
mass and velocity distributions and intrinsic volatile content of the 
impactors. We apply our model specifically to Titan, Callisto, and 
Ganymede. The impacting population is identified with comets, 
either in the form of stray Uranus-Neptune planetesimals or as 
dislodged Kuiper belt comets. Systematically lower impact veloci- 
ties on Titan allow it to retain a thick atmosphere, while Cailisto 
and Ganymede get nothing. Titan's atmosphere may therefore be 
an expression of a late-accreting, volatile-rich veneer. An impact 
origin for Titan's atmosphere naturally accounts for the high D/H 
ratio it shares with Earth, the carbonaceous meteorites, and Halley. 
It also accounts for the general similarity of Titan's atmosphere to 
those of Triton and Pluto, which is otherwise puzzling in view of 
the radically different histories and bulk compositions of these 
objects. © 1992 Academic Press, Inc. 

1. INTRODUCTION 

Ganymede, Callisto, and Titan are of similar size, mass, 
and density, and so presumably share similar bulk compo- 
sition. Aside from their belonging to different planets, 
there is only one obvious difference between Titan on the 
one hand and Ganymede and Callisto on the other: Titan 
has a thick atmosphere, and Callisto and Ganymede have 
nothing. We will argue here that this sharp contrast is a 
predictable consequence of impact erosion, i.e., the es- 
cape of atmospheric gases as a consequence of hyperve- 
locity impacts. From the standpoint of their ability to 
withstand impact erosion, the essential difference be- 
tween the three satellites is the distribution of impact 

velocities of incident material. Because Saturn is less mas- 
sive than Jupiter, and because Jupiter sits deeper in the 
Sun's gravitational well, the average impact velocity of 
stray bodies striking Titan is lower than those striking 
Callisto or Ganymede. Other things being equal, the lower 
impact velocity allows Titan to retain a higher fraction 
of incoming atmophiles, and to suffer less atmospheric 
erosion, than its Jovian counterparts. The question we 
will want to address here is whether this difference alone 
could suffice to account for their different fates. 

2. ATMOSPHERIC CRATERING 

Atmospheric cratering (a.k.a. impact erosion) refers to 
the expulsion of atmospheric gases by impact. It has been 
suggested, in diverse forms and various contexts, as an 
important loss process for planetary volatiles from the 
terrestrial planets (Cameron 1983, Watkins 1983, Walker 
1986, Ahrens and O'Keefe 1987, Zahnle et  al. 1988, 
Ahrens et  al. 1989, Hunten et  al. 1989, Melosh and Vick- 
ery, 1989, Chyba 1990). Three more-or-less orthogonal 
detailed mechanisms for atmospheric cratering have been 
developed. Walker (1986) emphasized the interaction of 
the impactor with the air it encounters on its way to the 
surface. Escape was limited to the air directly encoun- 
tered by the impactor, like a cookie cutter. Ahrens and 
O'Keefe (1987) treated the impact as a massless point 
explosion at the base of an exponential atmosphere. They 
predicted somewhat more escape than Walker. The most 
effective plausible mechanism for expelling atmosphere 
in an impact was proposed by Melosh and Vickery (1989). 
These authors considered both the velocity and the mo- 
mentum of the ejecta, and concluded that for sufficiently 
large, high speed impacts the ejecta could snowplow all 
the atmosphere above the horizon into space. Where ira- 

0019-1035/92 $3.00 
Copyright © 1992 by Academic Press, Inc. 

All rights of reproduction in any form reserved. 



2 ZAHNLE ET AL. 

pact velocities are generally much higher than the escape 
velocity,  the snowplow model is the most effective of the 
three. It should dominate impact erosion from the large 
icy satellites. 

In Melosh and Vickery 's  model atmospheric gases are 
swept to space by the momentum of a hydrodynamically 
expanding cloud of  superheated vapor  (and particles that 
condense from it) produced by impact. Escape occurs if 
there is enough extra momentum in the potentially escap- 
ing ejecta to accelerate the intervening atmosphere to 
escape velocity. For  the present purpose errors of a factor 
of a few are of  no moment,  provided that the description 
of  atmospheric cratering retains the important qualitative 
features.  Thus for a first cut we will use the "tangent-  
p lane"  parameterizat ion suggested by Melosh and Vick- 
ery (1989). This assumes that when atmospheric cratering 
occurs,  all the a tmosphere above the horizon is expelled; 
i.e., that part of the atmosphere lying above a plane tan- 
gent to the surface of the planet or satellite ~ escapes. 
Escape occurs  if (i) the expansion velocity of the rock 
vapor  exceeds the escape velocity from the planet, and 
(ii) the mass of rock vapor  exceeds the mass of atmosphere 
above the tangent-plane. 2 

The first criterion is deemed satisfied if the average 
thermal velocity of  the rock vapor  exceeds the escape 
velocity.  Melosh and Vickery assume that all the internal 
energy initially deposited by the shock is left where it was 
put as heat in the shocked material; i.e., they assume that 
the shock is perfect ly inelastic. They subtract from this 
the latent heat of  vaporization to obtain the thermal energy 
available to power expansion of  the vapor. With these 
assumptions Melosh and Vickery obtained v, as a lower 
bound on the impact velocity required for large-scale 
escape 

v - > v, ~ 2~/v~c" + 2Lvap, (1) 

where ve~ c is the escape velocity and Lv~v is the latent heat 
of  vaporization (for which Melosh and Vickery use 1.3 x 
l0 II erg/g for rock, and 3 × i01° erg/g for ice). This 
expression assumes the impact of identical materials; a 
somewhat  more complicated expression is needed for im- 
pact of  rock and ice. Since it overest imates the amount  of 
heat retained in the shocked material, Eq. (1) underesti- 
mates v,.. Later ,  in Section 5.5, we will modify Eq. (I) to 
allow for some elasticity in the shocked material. 

The second criterion is deemed satisfied if the mass of 

We will generally use the concrete if not always strictly appropriate 
"'planet" rather than "object" or "body" when referring in general to 
a planet or large moon. 

'- More detailed models of the phenomenon that account for different 
slant paths through the atmosphere and some other relevant matters are 
discussed by Vickery and Melosh (1990) and Zahnle (1990). 

the impactor exceeds the mass of  a tmosphere  above the 
horizon. Melosh and Vickery then presume that there is 
enough momentum in the rock vapor  to blow off  all the 
atmosphere encountered.  The fraction of an exponential  
a tmosphere above a plane tangent to the surface is H / 2 R ,  

where H is the density scale height and R the planet 's  
radius. This expression is accurate to order  H / R .  The 
minimum impactor mass for escape can then be written 

H 
m >_ m,. =- - ~  M Y , ,  (2) 

where Ya stands for the total mass of  the atmosphere 
normalized to the mass M of  the planet (grams of atmo- 
sphere per gram of planet). Equation (2) is, for the atmo- 
sphere, potentially disastrous. It states that a thinner at- 
mosphere can be eroded by smaller impactors.  Since 
smaller impactors are more numerous,  thinner atmo- 
spheres erode more rapidly. Thus once an atmosphere 
begins to erode,  impact erosion accelerates until the 
planet is wholly stripped (Melosh and Vickery 1989). 

3. ATMOSPHERIC EVOLUTION BY IMPACT 

This study begins with the premise that early atmo- 
spheric evolution was driven by impacts. Impactors  will 
be viewed as the sole source and atmospheric  cratering 
the sole sink of the atmosphere.  Emphasis  is placed on 
the accretion of  a late, volatile-rich veneer.  Other  pro- 
cesses - -e .g . ,  hydrodynamic  escape,  outgassing, and vol- 
atile recyc l ing- -a re  all neglected, not because they are 
negligible (they are not), but in order  to focus attention 
on what atmospheric cratering can and cannot  do. Aside 
from relative simplicity, the key advantage of neglecting 
these other processes is that the impact flux can be dis- 
cussed in terms of  the total mass accreted rather than 
in terms of an ill-known if not wholly arbitrary explicit 
function of time. 

Consider the competit ion between volatile accretion 
(e.g., impact degassing) and impact erosion of  an atmo- 
sphere. Let  yj denote the abundance of  an atmospheric 
spec ies j  in grams per gram of  impacting material, and let 

denote the abundance o f j  in grams per  gram of planet. 
The species j will be considered an obligate atmophile; 
i.e., a volatile with no significant reservoir  other  than the 
atmosphere.  The planetary inventory of  j then evolves 
according to the difference between its delivery in some 
impacts and its expulsion by others.  This competi t ion can 
be represented by the following equation, in which the 
planet of mass M accretes at the rate ~/: 

¢t ~/= ~ ( x y ~  - ~ Yj - Yi) .  (3) 
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The first term on the rhs of Eq. (3) is the contribution of 
the impactor's atmophiles to the atmosphere; the factor X 
(0 -< X -< 1) represents the fraction of the impactor's 
volatiles released into the atmosphere and retained by the 
planet. The second term represents atmospheric crater- 
ing. The cumulative effects of atmospheric cratering are 
integrated into a single nondimensional factor 7, which 
we have defined to be the ratio of the planet's accretion 
time scale to the atmosphere's escape time scale; when 
escape is important 7/is large. The third term accounts for 
the growing mass of the planet. It is negligible if impact 
erosion is important (i.e., if v/>> 1) or if one is considering 
only a late-accreting veneer of volatile-rich material.3 Nei- 
ther the accretion efficiency X nor the atmospheric crater- 
ing ~ would be expected to discriminate among obligate 
atmophiles, and so neither has been written with the sub- 
script j. However, in the general case X and "0 would be 
functions ofj .  

3.1. X and 

The source and sink functions X and ~ are average 
values determined by integrating the effects of individual 
impacts over the population of impactors. We will assume 
that yj is constant; i.e., that the composition of the im- 
pactors is on average independent of impact velocity and 
mass. An average source efficiency X can be defined by 

l fffx(m,v)h(m,v)mdmdv, (4) 

wheref×(m, v) refers to the fraction of a given impactor's 
volatile inventory retained by the planet. The differential 
impactor flux as a function of mass and velocity is denoted 
h(m, v). The mass accretion rate M is 

ff  h(m,v)mdmdv. (5) 

Equation (4) can easily be generalized to include other 
factors not addressed here. 

The atmospheric cratering efficiency can be defined in 
terms of Yj, but ~ is more naturally expressed in terms of 
the atmospheric inventory Nj (the total number of atoms 
o f j  in the atmosphere): 

(6) 

3 Equation (3) is not entirely self-consistent. With impact erosion h~/ 
should be identified not with the mass accreted by the planet but instead 
with the mass incident on the planet. The third term in Eq. (3) would 
then need to be multiplied by the ratio of mass accreted to mass incident. 
In practice, for thin veneers the third term is negligible, so the issue does 
not arise. 

can then be evaluated in terms of the fraction ~(m, v) of 
the planet's volatile inventory that escapes in an impact, 

M// = --~ ( (m,  v) h(m, v) dm dr. (7) 

For an obligate atmophile, like a noble gas, the fraction ~¢ 
is equal to the fraction of the atmosphere expelled in an 
impact, while for a condensed volatile, like water on 
Earth, £ would refer to the fraction of the ocean expelled. 
Since condensed volatiles are more likely to be retained, 
atmospheric cratering discriminates between strict at- 
mophiles like the noble gases and probably nitrogen on 
the one hand, and water and possibly carbon dioxide on 
the other. 

3.2. Mass Distribution o f  lmpactors 

Evaluation ofx  and ,/requires a description of the mass 
and velocity distribution of the impactors. In this paper we 
will assume that the velocity distribution is independent of 
mass. This is equivalent to assuming that big and small 
impactors revolve in similar orbits. The impact flux can 
then be written as a product of separate mass and velocity 
distributions, h(m, v) dm dv = f(v)  dv h(m) din. Possible 
velocity distributions for interesting classes of impactors 
are discussed in Section 5.4, 

It is usual and convenient to describe the mass spectrum 
of impactors by a power law 

h (m) d m =  Cm-  q din. (8) 

The appropriate value of the power law exponent q is not 
known. Expectations for q seem to range from 3/2 ~< q ~< 
2, with the higher values corresponding to more violent 
mutual collisions among the objects. Dohnanyi (1972) and 
Safronov et al. (1986) favor q = 11/6 for a distribution 
dominated by fragmenting collisions. Melosh and Vickery 
(1989) and Chyba (1990) use q = 1.47 for the late heavy 
bombardment. This value is derived from lunar cratering 
statistics using the popular Schmidt-Housen (1987) crater 
scaling relationship. Large asteroids have q ~ 2 (Hughes 
1982, Donnison and Sugden 1984). Because it is difficult 
to relate the masses and luminosities of comets, the com- 
etary mass distribution is harder to estimate. Nor is it 
clear that the same power law applies to large and small 
comets (for more on this view, see Weissman 1990). Given 
these caveats, for long period comets q has been estimated 
as -1 .7  (Hughes 1988, Donnison 1986). For short period 
comets q has been estimated as 1.45 (Donnison 1986). As 
much as possible we will treat q as a free parameter, but 
we will often use q = 3/2 because it allows closed-form 
analytical solutions for many interesting cases, as well as 
direct comparison with previous work using q = 1.47. 
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The constant  C is determined by integrating over  the 
whole mass distribution to get the mass accretion rate ~/. 
For  q < 2. 

ft~ f o  m~ q C. (9) ~I = f ( v )  dv 1 h ( m ) m  dm = 2~- q 

The velocity distribution f ( v )  is normalized such that 

ftl Cf(v) dv = 1. (io) 

The resulting mass distribution is therefore 

n(m)  dm - (2 - q))~l m -  q dm. 
m2-q (11) 

The largest impactor  is denoted m~. Its mass in a power 
law distribution of  impactors is statistically related to the 
total mass of  all the impactors.  Since we will mainly be 
discussing late-accreting volatile-rich veneers,  it is useful 
to define the mass of  veneer  accreted after time t as 

8M(t) - - =  ft present )~/(t) dt. (12) 

It should be noted that in models with impact erosion, the 
actual mass accreted is less than the incident mass 8M. 
Indeed, it is entirely possible for  a planet or moon to 
shrink under  a high velocity bombardment .  So long as we 
confine our  attention to thin veneers  (SM ~ M), there is 
no cause for confusion. The mass of  the largest impactor 
m~ in the veneer  is statistically related to 8M (Wetherill 
1975) by 

ml ~ (43-_~2qq) 8M. (13) 

It is important  that m I scales with the mass of the veneer.  
If this is not taken into account  (if, say, m 1 were treated 
as a constant) ,  there would be far too many impacts if m 1 
were too small, and major contributions from fictitious 
"'fractional impac ts"  if m~ were too large. To estimate ml 
the entire incident mass 8M is used. 

3.3 The Func t ions  X and  ~ f o r  I m p a c t  Erosion 
Fo l lowing  M V  

In their study, Melosh and Vickery ignored any vola- 
tiles that might have been present  in the impactors. How- 
ever,  as they point out elsewhere (Vickery and Melosh 
(1990), the impactor  itseff is the likeliest fraction of the 
ejecta to escape,  since it is shocked early and to the 
greatest extent ,  and it is initially positioned toward the 

outside of the plume. Thus it is implicit in their model that 
when atmospheric cratering occurs  the impactor  is also 
lost. The natural extension of the Me losh - -V icke ry  model 
is therefore to assume that if v > v,. and m > m C, all 
the volatiles in the impactor escape; otherwise they are 
retained. This means that (i) low velocity impacts and (ii) 
small objects contribute their volatiles with 100% effi- 
ciency to the atmosphere.  Therefore  

f x ( m , v ) = I O  m > m,, and v > v,. (14) t l  m < m ,  or v < vc. 

It is useful to reduce the integral over  velocity to a single 
parameter.  Define F× to be the fraction of  impactors with 
impact velocity less than vc; i.e., 

Along with yj and q, F x (and its close relative, Fn, which 
will be defined shortly) is one of  the three key free parame- 
ters in this study. F~ can be regarded as the fraction of all 
impacts that arrive slowly enough to be retained. A more 
general definition of F~ would allow for nonseparable ve- 
locity and mass integrals, as would arise if the effective 
value of  vc were a function of  m. In our  extension of 
the Melosh-Vickery  approximation,  F x is a measure of 
impact velocity vs escape velocity. Then for q < 2, inte- 
gration of  Eq. (4) yields 

H M )2-q 
x =  Fx + (1 - Fx ) ~-R-~I Ya • (16) 

The first term is the fraction of  impactors that hit slowly 
enough that their volatile cargo is delivered successfully. 
The second term refers to those impactors with high veloc- 
ities that are too small for their ejecta to e scape - - e i t he r  
they are stopped in the a tmosphere ,  or their ejecta are 
smothered by the atmosphere.  

The assumption that all the impactor 's  volatiles escape 
when atmospheric erosion occurs  is not beyond question. 
These volatiles are released on impact,  initially mixed 
with the rock vapor,  and thus may be no more likely to 
escape than is the rock vapor  itself. In the context  of  the 
simple Melosh-Vickery  prescription this is self-consis- 
tent, since when atmospheric cratering occurs  the im- 
pactor itself is implicitly assumed to escape.  But in a more 
realistic description of  the process only a fraction of  a 
large impactor need escape to clear away the atmosphere 
above the tangent-plane. Indeed, very  large impactors 
(with radii comparable to that of the target) potentially 
could remove considerably more than just  the tangent 
p l ane - -however ,  neither of  these omissions is likely to be 
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important, since large impactors are too few to contribute 
significantly to impact erosion. For almost all impacts 
escape is limited to the atmosphere above the tangent- 
plane; hence impact erosion is dominated by relatively 
frequent impacts with mass of order mc. Some conse- 
quences of the extreme alternative assumption, that none 
of the impactor's volatiles escape on impact, are consid- 
ered in Section 5.6. 

The function ~:(m, v), the fraction of the atmosphere 
expelled by an impact, can be written in the Melosh-Vick- 
ery approximation as 

((m, v) = ~'~ ~ (o 

0 

Again, it is useful to represent the integral over velocity 
by a single parameter: 

m > m~ a n d  v > v~ (17) 
m < m e or v < v c. 

l fo ° fvl f(v) dv. F. =- -~o ~(m, v)f(v) dv = (18) 

Because we have assumed that X(v) and ~(v) are both step 
functions with the step at the same v~, we have Fn = 1 - 
Fx. Hence introducing Fn has not necessarily introduced 
another free parameter. However, for the present we will 
carry both F x and Fn. Keeping them both is a convenient 
bookkeeping device for tracking the X and-0 terms through 
future equations; they can also be varied separately to 
test the relative importance of supply and escape on the 
stability of atmospheres. When ~: is integrated over the 
distribution of impactors, Eq. (7) gives 

~'7 = (1 Fx)y j ~ { F × y j + -  (m~12-q 
\m~/ 

_ f n 2 - q  YJ(mc) 2-q } 
q 1-~a\ml] -- Yj • (20) 

According to Eq. (13) the mass of the largest impactor 
m~ is linearly proportional to the veneer mass 8M. The 
atmospheric evolution equation (20) then becomes a first- 
order differential equation for yj as a function of the veneer 
mass 8M. It is convenient to define a nondimensional 
veneer mass 

8M 
x -- - - .  (21) 

M 

In the present epoch, which is marked by occasional im- 
pacts of order 1018 g, X is of the order l0 -a o r  10 -9  . Recall 
that 8M(t) has been defined as the veneer not yet accreted 
(see Eq. (12)), so that x(t) --~ 0 as t --~ o¢. This was done 
so that the mass of the largest impactor m~(t) could be 
related to x(t) in a relatively simple way. If the veneer is 
assumed thin we can treat M as constant. It is consistent 
with the approximation of a thin veneer to drop the last 
term on the right-hand side of equation (20) (the term 
involving Yj alone), since this term arises from the chang- 
ing mass of the planet. (This term could also be dropped 
simply on the grounds that it is necessarily small if atmo- 
spheric cratering is important.) With the above adjust- 
ments, when fully expanded Eq. (20) becomes 

2 - -  q { ( M ] 2 - q y l a - q .  
, =  F , ~  \ Om,, ] (19) 

The above expression assumes that (ml/mc) q- J >> 1, i.e., 
that the largest impactor is much larger than the smallest 
impactor that can effect atmospheric erosion. 

Although the tangent-plane prescription is crude, it 
should be emphasized that the important quantities, 
and X, are integrals taken over the mass and velocity 
distribution of impactors. Unless this distribution is 
pathological (if, say, it were distinguished by a peculiar 
preponderance of objects of mass me), a more sophisti- 
cated parameterization changes r/and X by no more than 
a factor of 2 or 3. 

3.4. 

With the above expressions for X and ,/, Eq. (3) for the 
inventory of the atmophile j based on the tangent-plane 
model for atmospheric cratering becomes 

._~ 2-q q-2 dx -FxY j -  (1 - F x )  ~o Ya Yi x 

3 - q  

The three terms on the rhs represent, respectively, (i) the 
volatiles contributed by slow impactors, (ii) the volatiles 
contributed by small, fast impactors, and (iii) impact ero- 
sion by large, fast impactors. Analytical solutions to Eq. 
(22) can be obtained given either a simple enough prescrip- 
tion for the evolving mass of the background atmosphere 
Ya or for the mixing ratio Y~/Ya, or if the governing equa- 
tions are further simplified. Examples of the former are 
to assume constancy of Ya or Y/Ya. An example of the 
latter is to assume that all impacts with m > m C are erosive, 
i.e., to take F x = 0. This assumption is useful for estimat- 
ing the maximum atmosphere that can be completely ex- 
pelled by a given mass veneer. It is also useful for direct 
comparison with the work of Melosh and Vickery. 
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4. ATMOSPHERE EVOLUTION WITH CONSTANT 
MIXING RATIOS 

Consider  an a tmosphere  that has the same composi t ion 
as the volatiles in the impactors .  This is equivalent to 
taking Y/Y~ constant .  Constant  Y/Ya means that the con- 
stituent j is a lways present  in the a tmosphere  in constant  
mixing ratio. A trivial example  is the one-volatile planet,  
for which Yj/Y~ = 1. This case,  which we will emphasize  
in this study, is useful for  compar ison  with Melosh and 
Vickery  (1989) and Chyba  (1990). More generally, the 
assumpt ion  of  constant  Yj/Ya should hold for all volatiles 
if the a tmosphere  is their pr imary  reservoir ,  since to first 
approximat ion  a tmospher ic  cratering does not discrimi- 
nate be tween  a tmospher ic  const i tuents  in a well-mixed 
a t m o s p h e r e - - e i t h e r  a moelcule is above  the horizon or it 
is not. Howeve r ,  it would not hold if the major  atmo- 
spheric const i tuent  had its pr imary  reservoir  elsewhere 
and exchange was rapid. Such, for example ,  might be the 
case for CO2 on Mars,  if mos t  Mart ian CO2 is bound up 
in carbonates  and recycling were  efficient. 

Given constant  mixing ratios, Eq. (22) for q < 2 can be 
writ ten 

dYj 
- Z r -qxq - 2  - F yj, 

dx 
(23) 

q 

0 . 0 1  . . . . . . . .  i . . . . . . . .  i . . . . . . . .  i . . . . . . . .  i . . . . . . . . . . . . . . .  1 . 83  

1 .7  

1.6 
0 . 0 0 1  1.5  

u~ 

0 . 0 0 0 1  
G, 
t '- 

1 0  . 5  

o9 
1 0  . 6  

o 7 
10- ¢.. 

Q .  
o~ 
O 
E 10 .8 

, ~  • 
T I  n 

1 0  . 9  

1 0  . 7  1 0  . 6  1 0  . 5  0 . 0 0 0 1  0 . 0 0 1  0 . 0 1  0 . 1  

Veneer  Mass :- Planet Mass (x) 

FIG. 1. The maximum atmospheric mass Y that can be expelled by 
an impacting veneer of mass x for three values of q, the power law 
exponent describing the (differential) mass spectrum of impactors. Mars 
(dots) and even Venus (dashes) are quantitatively similar (both shown 
for q = 1.7). Rectangles indicate veneer masses (width corresponds to 
plausible q) needed to remove present atmospheres of Titan, Mars, and 
Venus. 

where  the constant  

m j . ~ { ~ o ( ~ ) } 2 - q { f , O 2 q ~ q l ( Y a ~  l q 
\ rj/ 

- ( 1  - F x ) y j \ y /  j (24) 

is independent  of  x and Yj. The differential equation that 
results is homogeneous ,  and can be integrated analytically 
for q = 3/2. This case will be dealt with below in some 
detail because  the basic features  of  the solution carry over  
for  all 1 < q < 2, for which solutions can only be obtained 
numerically.  

4.1. The One-Vo la t i l e  P l a n e t  

For  the remainder  of  this section we will assume a one- 
volatile planet.  The subsc r ip t j  will be dropped,  and Yj/Ya 
will be set to unity. Equat ion (23) is then 

d Y  
-~x = A y 2  qxq-2 -- Fxy '  (25) 

and the constant  Aj  simplifies to 

3 - q  F 2 -  
1 (1 - F x ) y  }. (26) 

4.1.1.  M a x i m u m  i m p a c t  eros ion .  Melosh and Vickery 
neglected the volatiles contr ibuted by the impac tor  (y = 
0) and assumed that half the impacts  were  energetic 
enough to effect erosion (F  x = 0.5). The assumpt ions  
F x = y = 0 maximize the effect of  impact  erosion;  there- 
fore it is useful to first solve Eq. (25) with F x = 0. This is 
equivalent to assuming that all large impacts  are erosive;  
i.e., that v > vc for all impacts.  

 q=Yq, a ( x q ,  x q  ) 
(27) 

The initial state is at Y0 and x 0. Since 8M(t)  --* 0 as t 
approaches  the present ,  retention of  a finite a tmosphere  
places an upper  bound on the mass  of  venee r  8M 0 that can 
be accreted.  Accordingly,  the min imum mass  veneer  x 0 
needed to strip a planet of  an a tmosphere  Y0 is 

Xo = yo A - l/(q- l) (28) 

Figure 1 shows the biggest a tmosphere  Y0 that  can be 
complete ly  r emoved  by a veneer  of  mass  x 0. It  has been  
prepared using Ti tan ' s  parameters ,  but because  A(q ,  
F x = 0, y = 0) is comparab le  for  the terrestrial  planets ,  
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the corresponding lines for Mars and even Venus (the 
dashed line on Fig. 1 is for Venus with q = 1.7) are 
quantitatively similar. It should be recalled that x 0 refers 
to the mass of impactors incident on the planet; the mass 
actually retained is in this example very much less. It is 
interesting to consider how thin a veneer could strip Titan 
and Mars of their present atmospheres. These are indi- 
cated by the rectangles for q ranging from 1.5 to 1.83. For 
T i t a n ( Y =  6.6 x 10 -5 ) with 1.7 < q < 1.9, x 0 i sabout  
0.002, while for Mars (Y ~ 3.6 × 10 -8) with the same 
range of q, it is only of order 10-6. The former corresponds 
to - 3  km of ice. The latter, which corresponds to a rocky 
veneer less than 2 m thick, highlights the extreme rarity 
of the Martian atmosphere. These estimates become sen- 
sitive to q for q -< 1.6; if for Mars we take MV's parameters 
(F x = 0.5 and q = 1.47), the required rocky veneer rises 
to -160 meters (mostly supplied by a single low velocity 
impact). We will discuss Mars more fully in a separate 
paper; for the present it suffices to note that the present 
Martian atmosphere is probably too thin to be comfortably 
explained as the end point of a history of impact erosion. 
That such thin veneers could separate planets from their 
atmospheres rather strongly suggests that the present dis- 
tribution of planetary atmospheres has been greatly influ- 
enced by events at the very end of planetary accretion. 

4.1.2. I m p a c t  erosion with compe t ing  source  terms.  
In the more general case, with F x ~ 0 and y ~ 0, Eq. (25) 
can be solved analytically only for q = 3/2. 

d Y  A yl/2 x _  l/2 = - Fxy. (29) 

The constant A reduces to 

( 3 H ]  1/2 
a = ( 1  - F x ) \ ~ - /  (1 - y ) .  (30) 

Equation (29) is solved by defining u z =- Y/x. The resulting 
equation for u is 

2udu dx  
(31) 

U 2 - -  A u  + Fxy x 

The equation has three solutions, depending on whether 
the two roots of the quadratic equation obtained by setting 
the denominator equal to zero, 

a 

l v  + 

.0  iiiiiiiiii l i  iil. " . . . . . . . . . . . . . . . . . . . . . . .  

b 

E Yf(mln) 
/ 

-..---Veneer (x) 0 -.,---Veneer (x) 0 
Time - - ~  Time 

FIG. 2. Schematic illustration of atmospheric evolution in the ero- 
sive regime (a) and the accumulative regime (b). At any one time, x 
refers to the veneer mass still to be accreted. In the erosive regime (a), if 
the initial atmosphere is thinner than Y+, there results a thin atmosphere 
balancing impact erosion with impact delivery. This equilibrium atmo- 
sphere, Y-, exists only during accretion, and declines to zero linearly 
with x. If the initial atmosphere is thicker than Y÷, the veneer is not 
massive enough to expel all of the atmosphere. A thin atmosphere 
results only if the veneer mass is finely tuned to the initial mass of the 
atmosphere. In the accumulative regime (b), some atmosphere remains 
whatever its initial thickness. The minimum remnant atmosphere, corre- 
sponding to the evolution of an initially airless body, is described by Eq. 
(40). 

mulative"; the second category marks the boundary be- 
tween these. 

If A 2 > 4F×y, the two roots to Eq. (32) are real and 
separate. These are erosive histories, in that impact ero- 
sion (as represented by A z) exceeds atmophile accretion 
(4F×y). The solution is expressed in terms of Q, defined 
by 

Q =- ~v/A 2 - 4Fxy.  (33) 

Although it may not be immediately apparent, the solution 
to Eq. (29) can be written 

I YU2(x) - ½ (A + Q )  X1/2~ A+Q 
-Gi75-'-1 . . . . .  ~ " 
Yo - ~ (a  + Q) x o J 

yI/2(x)  - ½(A - Q) xl/2~ A -  Q 

: - 7(-X-_ QSx  J " t. o - - ~  
(34) 

The initial state is denoted by t = t 0, x 0 -- x(t0), and Y0 ~ 
Y (to). The roots are 

= ¼ (A --- Q)2 x. (35) 

f ( u )  =-- u 2 - A u  + F×y = O, (32) 

are real and separate, real and coincident, or complex. 
In a rather broad and inexact sense, the first category 
describes atmospheric histories that are fundamentally 
"erosive" and the third category histories that are "accu- 

The two roots divide the (x, Y) plane into three regions. 
This is illustrated schematically by Fig. 2a. After some 
contemplation of Eq. (34) it becomes apparent that Y(x) 
can never cross a root. Thus there are three kinds of 
erosive histories, determined by the initial conditions and 
thereafter bounded by the roots: 
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(i) If Y0 is initially smaller than the smaller root I~ o, then 
Y(x) will always be smaller than J'-(x). These are the 
solutions in the lower third of Fig. 2a. These atmospheres 
vanish as x goes to zero, since I?- ~ x. Physically, these 
solutions correspond to the history of an atmosphere sur- 
rounding an initially airless planet in an intense atmo- 
spheric cratering regime. The mass of atmosphere asymp- 
totically approaches the smaller root f" (x), which 
corresponds to the equilibrium atmosphere balancing loss 
and gain. But ~'- is a vanishing equilibrium, since it de- 
clines to zero in proportion to the mass of veneer still to 
be accreted. Such ephemeral, accretion-dependent atmo- 
spheres may actually have some relevance in the solar 
system including, in particular, Mars and Callisto. 

(ii) Solutions in the middle third of Fig. 2a begin with 
f'o < Y0 < Y%. These solutions are bounded by the two 
roots, evolving away from I >+ and toward Y as x --* 0. 
These atmospheres are also destined to disappear. The 
larger root I ~+ describes the evolution of the thickest 
atmosphere that can be eroded to zero by a veneer of 
mass 8M 0. 

(iii) Solutions in the top third of Fig. 2a are those for 
which I10 > l~0; i.e., these solutions correspond to initial 
atmospheres too thick to entirely erode away. In general 
the remnant atmosphere will then itself be thick, unless 
the initial conditions are very finely tuned. The final thick- 
ness of the remnant atmosphere is 

Yf = { Y'/2 o -  ½ (A + Q) x°~ 1"1 
+ A / Q  

X y1/~,_½(A - Q)x o (36) 

2A I {2Y'~-- Ox'/2~ {2Y~/2 - Ax~/2~ 
Q ,  [ t a n -  ~ - t a n -  ~ - - - \ Q,x,/2 /l \ Q,x~/2 ] J" 

(38) 

There is but one regime, as illustrated by Fig. 2b. Some 
atmosphere is retained whatever the initial conditions. 
The asymptotic solution as x ~ 0 is 

rr= (to ~vt/:~/2 - ' 1 - o  ~o + FxYXo) [ 2 A { 2  ' [2yI~--Ax~I2]]~] 
x exp - ~ -  - tan-  ~- Q,x~/2 / j j .  (39) 

The minimum atmosphere, corresponding to an initially 
airless planet, is 

Yr= Fxyxoexp[ 2A ( A, --Q-;-{2 + t a n - '  ~-7) } ] .  (4o) 

This is a useful and tractable result. Equation (40) can 
also be applied to accretion of several volatiles provided 
that they maintain the same constant ratios in the atmo- 
sphere and the source impactors. This will be true if they 
are all strict atmophiles. If this condition is met, A and Q' 
in Eq. (40) are replaced by A t and Q); A t being obtained 
from Eq. (24) with q = 1.5, and Q)being obtained by using 
Aj rather than A in Eq. (37). We will use both versions of 
Eq. (40) later in our story of how Titan got its atmosphere 
(if one wishes to glance ahead, see Fig. 3). 

In the special case where A 2 = 4FxY, the two roots are 
real and coincident. In this case the solution to Eq. (31) 
is 

There does exist a range of initial conditions that can give 
rise to a thin remnant atmosphere, but the range is narrow. 
A more quantitative discussion of this matter is deferred 
to the Mars paper. 

I f  A 2 < 4Fxy, the two roots to Eq. (32) are complex. 
Although we have labeled histories in this general class 
as accumulative, because the source 4 Fxy exceeds ero- 
sion A 2, they too can have a markedly erosive character. 
However,  they differ fundamentally from the erosive his- 
tories in that an atmosphere is always left behind at the 
end of accretion. The parameter Q' is defined as 

Q' =- X/4F×y - A 2. (37) 

The solution to Eq. (31) is then 

[ Y -  AYI/Zxm + F~yx]  
logl  . . . . .  I/2 1/2 \ r  o -  A z  o x o + F×YXo/ 

[ y3/2 _ ½ Axt/2~ _ A x  Ax° (41) 
l°g~01/2 ~l~,,~.,o / 2 Y ~ - A x  2Y0 - axo" 

There are two regimes. If 2Y 0 < A x  o, then 2Y < A x  for 
all x, and the atmosphere disappears. These solutions 
correspond to atmospheres that are too thin initially to 
survive the bombardment.  Thicker initial atmospheres 
survive; the remnant is 

 '12 e d 
- -  1 ~  - - - -  . 1 / 2 l "  

~,aJt 0 } (42) 
2Y o - A.% / 

4.2 Why is there Air? The Division between Planets 
with and without Atmospheres 

The above considerations imply that a planet or satellite 
can retain a substantial atmosphere if one of two condi- 
tions is met. The first occurs if the initial atmosphere is 
thick enough to survive impact erosion. This requires that 
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Y0 > I~'d - = ¼ (a  + 0)  2 x 0. (43) 

A special case of  Eq. (43) was briefly discussed in the 
context  of  Fig. 1. The second condition occurs  if atmo- 
spheric evolution is accumulative;  i.e., i fA 2 < 4F×y. Be- 
cause the first condition requires generation of  a thick 
a tmosphere  in the first place, the second condition is more 
fundamental .  The second condition can be placed either 
on F x, the fraction of  slow impactors,  or on y, the intrinsic 
atmophile content  of  the impactors.  Since A is a function 
o f y  and F x (using Eq. (30) with Fn = 1 - Fx), for a given 
value of  y the critical value F× is found by solving 

2~v/yF× - A(F  x, y) = O. 

For  a given value of  y this is a quadratic equation for Fx, 
or alternatively, for  a given value of  F x this is a quadratic 
equation for y. Equation (44) is not difficult to solve, but 
it is more useful to discuss the generalization to q ~ 3/2. 

4.2.1. Extension to 1 < q < 2. The above argument 
regarding the impact generation of  an atmosphere over  an 
initially barren planet can be extended to other  values of  
q. Consider  the generalization of  Eq. (31) obtained from 
Eq. (25) with u 2 --- Y/x: 

2udu dx 
l i  2 - -  A l l  4 - 2 q  d- Fxy x 
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mum value o f f (u )  is zero. Thus the root  is easily found 
by solving df/du = 0 subject to the condition tha t f (u )  = 
0. Eliminating u gives the desired relationship between q, 
F x, and y, 

2 - q  17-1 
(2 - q) A = ( ~ - i ' -  1 Fxy (47) 

Equation (47) defines the boundary  between the accumu- 
lative and erosive regimes. The constant  A, as defined by 
Eq. (26), is a function of  several parameters ,  including F x 
and y. Thus Eq. (47) is an implicit equat ion for the critical 
value of  F x given y and q, or alternatively,  an implicit 

(44) equation for the critical value of  y given F× and q. Solu- 
tions to Eq. (47) must be found numerically. Equation (47) 
can be used for a multivolatile planet if A is replaced by 
Aj, as defined by Eq. (24). The argument leading to Eq. 
(47) is rigorously valid in the limit that the dominant  reser- 
voir for all major atmospheric consti tuents is the atmo- 
sphere itself. For  a fixed value of  q, the key factors that 
determine whether  an initially barren satellite or planet 
will accumulate an a tmosphere  are the size of  the planet, 
the impact velocity distribution Fx, and the innate volatile 
content  of  the impactors y. The size of  the planet enters 
directly as R and indirectly as the atmospheric  scale height 
H,  but more importantly,  it enters indirectly in F x through 

(45) ve~ c . 

Setting the denominator  of  the integrand on the left-hand 
side to zero yields 

(46) U 2 - -  m R  4 - 2 q  -t- Fxy # f ( u )  = O. 

For  1 < q -< 2, Eq. (46) has two real positive roots,  one 
real positive root  (i.e., the two roots are coincident),  or 
no real positive roots.  These cases are directly analogous 
to the different cases for q = 3/2. 

When two positive roots exist, the larger corresponds 
to the repulsive equilibrium I? ÷, and the smaller to the 
attractive equilibrium Y-. As with q = 3/2, the two roots 
decline linearly with x, so that unless the initial atmo- 
sphere Y0 is thicker than I:'÷x0, the atmosphere vanishes 
as x ~ 0. The larger root  gives the maximum atmosphere 
that can be stripped by a veneer  of  mass x. Also as with 
q = 3/2, when there are no positive real roots to f (u )  = 0, 
at least some atmosphere  must accumulate.  

Again by analogy to the case with q = 3/2, the critical 
so lu t ion- - the  solution dividing airless planets from those 
accumulating a tmospheres - - i s  that solution for which 
f (u) = 0 has one real positive root. Since in this critical 
case the one real positive root of f (u)  = 0 is a double root,  
the first derivative o f f (u )  is also equal to zero. Put more 
graphically, the critical solution is the one where the mini- 

5. TITAN, GANYMEDE, AND CALLISTO 

There  are several ways we might at tempt to construct  
divergent evolut ionary histories for  the three satellites. 
A traditional approach is to postulate different volatile 
inventories in circum-Jovian and circum-Saturnian "sat-  
ellitesimals" [e.g., Lunine et al. 1989]. It could reasonably 
be argued, for instance, that the stuff Titan was made 
from was much colder  than the stuff Callisto and Gan- 
ymede were made from, and thus was qualitatively more 
volatile-rich. In particular, this hypothesis  would seem to 
require that Titan contain both ammonia and methane as 
important bulk constituents.  Lunine et al. (1989) give two 
examples of  such scenarios. One is that Titan, but not 
Ganymede  and Callisto, accreted CH 4 and N H  3 . The other  
allows Ganymede  and Callisto to accrete  NH3, but not 
C H  4. The latter can be accomodated  if C H  4 w e r e  the 
critical ingredient in a coaccret ing greenhouse atmo- 
sphere. Then the presence of  CH 4 on Titan might have 
allowed N H  3 to become an atmospheric  species on Titan 
alone. Once in the a tmosphere  N H  3 could have been con- 
verted to N 2 by photochemis t ry  or shock chemistry.  Nei- 
ther is an unattractive concept ,  but both would seem to 
predict more than a surficial composit ional  difference be- 
tween Titan on the one hand and Ganymede  and Callisto 
on the other.  
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A second approach is to postulate preexisting thick 
atmospheres, and then ask whether a late veneer of high 
velocity impactors can selectively remove them (e.g., 
Lunine et al. I989). This begs the question of the origin 
of the atmospheres in the first place, although accretion 
of a primary atmosphere from a swarm of slow-moving 
titanesimals (or their counterparts in the Jovian system) 
seems plausible enough (Lunine et al. 1989). But there is 
another matter. If this earliest atmosphere is to have any 
relevance to the modern solar system, it must survive 
later bombardment by high velocity intruders. We showed 
earlier that if both F× ~ 1 and y ~ (2 - q)/(q - 1), a late 
veneer equivalent to 3 km of ice could suffice to strip 
Titan of its present atmosphere. This was the subject of 
Fig. 1. Three kilometers of ice is not a lot of material. 
It would be surprising if the late veneer were so thin. 
Moreover, to strip Callisto and not strip Titan would re- 
quire a veneer of just the right thickness--neither much 
thicker, ere both be stripped, nor much thinner, ere nei- 
ther be stripped. Such fine-tunning makes us uncomfort- 
able, as it did (in somewhat different circumstances) 
Lunine et  al. before us. If fine-tuning is to be avoided, the 
restrictions on either F x or y must be relaxed. If just the 
restriction on F× is relaxed,then fine-tuning can be avoided 
if F x is small for Callisto but close to one for Titan. If 
the restriction on y is relaxed, the veneer necessarily 
contributes heavily to the atmosphere, and comes to dom- 
inate its composition. This latter case is ultimately indis- 
tinguishable from the case where an atmosphere accretes 
around an initially barren object. 

This brings us to the path we will follow here. We will 
begin with the artificial assumption that the satellites were 
initially barren, and that Titan's atmosphere is a by-prod- 
uct of a late-accreting "cometary"  veneer. Because for 
any single source q and y would be the same for all three 
satellites, F x is the only parameter that distinguishes 
among them. We will consider three potential sources for 
the comets: Uranus-Neptune planetesimals, the (hypo- 
thetical) Kuiper belt, and the Oort cloud. The location of 
the source affects the impact velocity. If two of these 
sources were important in differing degrees for the differ- 
ent satellites, some variance in q and y might result. 

An attractive feature of this late veneer hypothesis is 
that it automatically accounts for the general composi- 
tional similarity shared by the atmospheres of Titan, Tri- 
ton, and Pluto. The explanation could be straightfor- 
w a r d - t h e y  were coated with the same stuff but a 
subtler explanation is more appealing; Triton and Pluto 
may themselves represent the composition of the veneer- 
ing material. Triton, which is apparently a captured satel- 
lite of Neptune, and Pluto, which is probably not an es- 
caped satellit~ of Neptune, are sufficiently alike (in 
particular, they have similar densities, which are high 
relative to outer Solar System regular satellites) as to 

suggest that they are surviving representatives of the once 
plentiful planetesimals that formed Uranus and Neptune. 
It has long been suspected that comets are also surviving 
U-N planetesimals. Such outer Solar System objects are 
natural candidates for a late veneer. 

Because there are four poorly constrained parame- 
t e r s - th ree  parameters (q, y, and F×) determine whether 
an atmosphere accumulates, and a fourth, the veneer mass 
x0, affects the quantity of atmosphere that accumu- 
l a t e s - i t  is difficult to formulate a telling test of our hy- 
pothesis. We cannot expect to reach a clear, unambiguous 
decision. 

We will first discuss the atmophile content of the im- 
pactors, and then ask whether Titan's atmosphere can be 
supplied by a veneer of reasonable thickness. We will 
then map out the surface in parameter space between 
objects that accumulate atmospheres and those that do 
not. For presentation, we will at first treat y and q as 
independent and F x as dependent. Since F x is the only 
parameter that effectively distinguishes between Titan, 
Ganymede, and Callisto, we will present these results for 
Titan only. We will then attempt to calculate F x for the 
three satellites. Finally, we will consider where Gan- 
ymede, Callisto, and Titan place with respect to this 
boundary. 

5.1. The A t m o p h i l e  C o n t e n t  o f  the  I m p a c t o r s  

In the present context the relevant atmophiles are prob- 
ably N2, CH4, and CO. Water cannot be regarded as an 
atmophile or even a volatile at these distances, and in 
all likelihood the same prohibition applies against NH3, 
HCN, and CO2. However, what is important in the pres- 
ent context is not the form taken by the atmophile ele- 
ments while in the comet, but instead the form they take 
after impact, since it is in this form that they enter the 
atmosphere. In a low speed impact, such as those of 
the titanesimals, it is imaginable that a relatively fragile 
molecule like NH 3 might survive impact. But in the high 
speed impact of a comet or U-N planetesimal very high 
temperatures and pressures are unavoidable (e.g., Chyba 
et al. 1990), and most molecules are torn apart. A com- 
plete chemical reorganization in accord with high temper- 
ature thermochemical equilibrium takes place. As the 
shocked gases cool chemical reactions take place more 
slowly, and those with significant activation energies com- 
pletely stop, leaving the characteristic chemical composi- 
tion of hot gases "frozen" in (Zel'dovich and Raizer 1967, 
pp. 564-571). 

For a more-or-less solar composition comet, the most 
important C- and N-bearing products are likely to be CO 
and N 2, with small additional amounts of CO 2, CzH z, 
CH 4, and HCN. Elemental carbon might also form. For 
nitrogen this leads to a simple resolution: whatever form 
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it took in the comet, most of the comet's nitrogen enters 
the atmosphere as N2. Carbon is more problematic; suffice 
it to say that CO atmospheres no longer exist, perhaps 
having been consumed by reaction with water to form 
CO2, CH4, and H 2, the latter readily escaping to space. 

Compositional data for Comet Halley (Jessberger et al. 
1989) can be combined with solar elemental abundances 
(Anders and Grevasse 1989) to provide useful constraints 
on plausible values of y for planetesimals formed in the 
outer Solar System. The major elements that constitute 
these objects are Si, Mg, Fe, S, O, C, N, and H. We 
assume that all the sulfur combines with Fe to form troilite 
(FeS), and that the rest of the rock-forming elements (Si, 
Mg, and the balance of the iron) combine stoichiometri- 
cally with oxygen. We assume that water ice contains 
about 50% of the cosmic complement of O and that 
"CHONs"  (chemically complex particles composed 
chiefly of the elements C, H, O, and N, in the approximate 
ratios 1 : 1 : 0.5 : 0.12) contain about 55% of the cosmic 
complement of C (see Pollack et al. 1991 for a full ac- 
count). 

The balance of the cosmic complement of C, N, and O 
would have been present in highly volatile species, chiefly 
CO, which do not appear to have fully condensed where 
Halley formed. In situ and remote sensing data from the 
Giotto and VEGA spacecraft observations of Halley pro- 
vide abundant estimates for the major volatile molecules 
in the coma. These are given in terms of gas production 
rates relative to H20 (Jessberger et al. 1989). Carbon 
monoxide was the most abundant C-bearing molecule, 
produced at -17% of H20. About half of it derived from 
the decomposition of some more complicated parent, but 
the rest appears to be CO native to the comet. With the 
above assumptions, our standard comet is (by mass) 
roughly 34% water ice, 31% rock, 23% CHON, and 9% CO 
and parent, with the balance consisting of other volatiles 
present in small amounts. Ammonia, N2, and CH 4 are of 
particular interest. Ammonia was an important N-bearing 
volatile, and is thought to be a parent molecule. If so, it 
represents a mass fraction of about 1-3 × 10 -3. Molecular 
nitrogen was not detected but is expected in some theories 
at the percent level (Engel et al. 1990). Finally, CH4 was 
detected and is thought to have been derived from a more 
complicated precursor with a fractional abundance of or- 
der 7 × 10 -3. 

As CHON particles are the major reservoirs of C and N 
in comets, additional C- and especially N-bearing volatile s 
are likely to be produced by shock-heating of planetesi- 
mals when they strike a satellite. If all the C and N in 
CHONs were liberated on impact as CO and N 2, this 
would correspond to mass fractions of 0.16 and 0.016, 
respectively. In summary, for nitrogen y probably lies 
between about 0.001 and 0.03, while for carbon y probably 
lies between 0.04 and 0.25. The lower values refer to 

volatile parent molecules only (i.e., NH3 and CO). The 
upper limits include the easily converted parent molecules 
and complete conversion of CHON particles to atmo- 
philes, as well. 

5.2. H o w  Thick a Veneer  is N e e d e d  to Give Titan 
Its A tmosphere?  

The first question to ask is whether Titan's atmosphere 
can be supplied by a veneer of reasonable thickness. This 
question concerns a fourth free parameter, x0, that does 
not figure in the qualitative matter of whether an atmo- 
sphere accumulates but does figure in the quantitative 
matter of how much atmosphere accumulates. The predic- 
tions of Eq. (40) for an initially airless Titan are shown in 
Figs. 3a and 3b. Figure 3a was prepared presuming the 
Titanian Yf = 6.6 x 10 -5 (its present atmosphere). Equa- 
tion (40) was then solved for the veneer mass x0 as a 
function of the parameter F x. (Recall that x0 refers to 
the total mass of incident impactors; the mass actually 
accreted is of order Fxxo). The different curves corre- 
spond to different volatile contents y. The same figure 
applies with only minor adjustments for the accretion of 
Titan-like atmospheres by Callisto or Ganymede. Equa- 
tion (40) presumes q = 1.5. These are the solid curves in 
Figs. 3a and 3b. Thicker veneers are needed for q = 1.7. 
For comparison, analogous curves with q = 1.7 for y = 
0.01 and y = 0.03 are shown as dotted lines on Fig. 3a. 
These were obtained by numerically integrating Eq. (25). 

It is apparent that it would have been difficult for Titan 
to accrete its atmosphere from a thin veneer of material 
if F x ~ 1. This highlights a fact that is worth stressing 
here: Titan's atmosphere is quite thick. Titan is much 
more like Venus (Y = 9 × 10 -5) than Earth (Y = 8.5 x 
10-7). If one is simply comparing nitrogen inventories, 
Titan is vastly richer than either. It is not easy to generate 
such a thick atmosphere from a thin veneer, but it can be 
done. 

Figure 3a assumes that Titan's atmosphere was always 
predominantly nitrogen. This may be too pessimistic. It 
is possible that during accretion other more abundant 
atmophiles resided in the atmosphere. This would make 
the coaccreting atmosphere thicker than if it were N 2 
alone. Since a thicker atmosphere is less subject to impact 
erosion, this would make it easier to retain nitrogen than 
if N2 were the only important atmophile. Because it is 
potentially abundant in cometary material and a reason- 
able product of shock-heating (Prinn and Fegley 1989), 
carbon monoxide may be the best candidate for a transient 
atmosphere. Equation (40) can be applied to accretion of 
two volatiles provided that their ratio is constant and A 
and Q' are replaced by Aj. and Q~. Figure 3b has been 
prepared assuming a (high) constant CO/N 2 ratio of 30 in 
both the atmosphere and the accreting material. This ratio 
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FIG. 3. The veneer mass needed to produce Titan's atmosphere. The curves are labeled by the impactor atmophile content y and are shown 
as a function of the parameter F x, the fraction of impacts with impact velocity below vc. (a) For the one-atmophile planet. In this case the atmophile 
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is comparable to the surficial CO2/N z ratios on the terres- 
trial planets. The key difference between the results 
shown in Figs. 3a and 3b is that, if impact erosion is 
important (F x small), it is easier to accrete a Titan's worth 
of nitrogen under a carbon monoxide shield. 

5.3 Under What Condit ions Does  Titan Get  
an Atmosphere?  

Figures 4 and 5 show minimum values of F x for which 
Titan develops an atmosphere. In Fig. 4, the critical value 
of  F x is shown as a function of q for four values of y, the 
atmophile content of the impactors. In Fig. 5 the roles of 
y and q are reversed. In preparing Figs. 4 and 5, Eq. (47) 
was solved for Titan, but because the three satellites have 
similar escape velocities,  the corresponding curves for 
Callisto and Ganymede are practically indistinguishable 
from Titan's. In both these figures y refers not just to 
nitrogen but to the total atmophile content of the im- 
pactors. It is apparent from the figure that, unless y were 
at the high end of  this range (or q extreme), an atmosphere 
would not be expected to accumulate around any of these 
icy satellites unless F x were pretty big; i .e. ,  unless the 
average impact velocity were comparable to or lower than 
v~. As will be shown below,  this condition is difficult to 
meet for Callisto and Ganymede,  but not unreasonable 
for Titan. 

The dependence  on q seen in Fig. 4 o f F  x is interesting. 
These calculations suggest that it is easier to capture an 
atmosphere from a population of  impactors with an ex- 
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treme value of q, be it high or low, than from one with an 
intermediate value of q. The reasons for this differ for q 
high and low, although both are traceable to the same 
cause: the chief agents of atmospheric erosion are the 
smallest impactors that can effectively expel atmosphere, 
as these are the most numerous. These are the impactors 
with mass of order m~. 

When q is smaller than 2, most of the mass is in the 
larger objects. The lower the value of q, the more strongly 
the total mass of all the impactors is concentrated in the 
few largest objects. If these large bodies are as volatile- 
rich as the other impactors, and if they are as efficiently 
degassed on impact (which are the assumptions made in 
this paper), they supply practically all the atmophiles. But 
very large impactors are relatively inefficient atmospheric 
craterers, because the damage done by any individual 
impactor is limited to expelling the atmosphere above the 
tangent plane. With a low value of q there are fewer 
impactors with masses of order m~ for a given mass of 
veneer accreted, and therefore less impact erosion for a 
given mass of atmosphere accreted. It should also be 
noted that for very low values of q chance plays a bigger 
role, because the final state could depend on the timing of 
the last large, slow-moving object to hit. 

Objects which are too small to cause atmospheric cra- 
tering are assumed to contribute their atmophiles to the 

atmosphere. For higher values of q (q ~ 2), the mass 
accreted in small impactors becomes a nonnegligible frac- 
tion of the total. Note that if q is large and the impactors 
especially atmophile-rich, thick atmospheres are pre- 
dicted even for F x ~ 1, and therefore, a thick atmosphere 
would accumulate whatever the satellite's mass. This oc- 
curs because all impactors smaller than mc are regarded 
as captured, regardless of impact velocity. 

Figure 5 shows some of the same information as Fig. 4, 
but in this case with y the independent variable and q the 
label. Note that if y exceeds (2 - q)/(q - 1) an atmo- 
sphere accumulates for any I x .  Mathematically, this par- 
ticular value of y is important because A changes sign. 
Physically, this is the same phenomenon (volatiles sup- 
plied chiefly by small impactors) discussed in the previous 
paragraph, seen from a different perspective. This is po- 
tentially an interesting limit in contexts where water can 
be regarded as an atmophile, since y for comets would 
then be of order 0.5. 

5.4. Impact  Velocities on Ganymede,  Callisto, 
and Titan 

To get F x, the cumulative impact velocity distribution 
must be compared to the velocity vc at which impact 
erosion begins. The velocity at which comets strike a 
satellite depends on the heliocentric orbit of the comet, 
the satellite's depth in the planet's potential well, and the 
surface escape velocity from the satellite. We use an 0pik- 
like approximation, which breaks the motion into three 
successive two-body problems (0pik 1976, Shoemaker 
and Wolfe 1982). In this approximation the impactor 
moves only under the influence of solar gravity until it 
crosses the planet's Hill sphere (which has a radius of 
roughly 0.5-0.6 AU for Jupiter and Saturn), then only 
under the planet's gravity, and finally under the satellite's 
gravity. This should be a good approximation for orbits 
with sizeable heliocentric eccentricity or inclination. 

A crude approximation to the mean-square impact ve- 
locity useful for order of magnitude comparisons is (Lis- 
sauer et al. 1988, Eq. (21); see also Eq. (52) below) 

2 ~ V  2 + 3Vs2at + 2 V rms ~ V esc, (48) 

where Usa t is the orbital velocity of the satellite about the 
planet; vest is the surface escape speed from the satellite; 
and v= is the relative velocity of the planet and the comet. 
The last satisfies 

v~= U sv 2 = v 2 ( 3 -  1 / a -  2 c o s i X / p ( 2 -  p/a), (49) 

where U s is a dimensionless parameter between 0 and 3 
defined by Eq. (49); vv is the planet's orbital velocity about 
the Sun; a and p are respectively the semimajor axis and 
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TABLE I 
Orbital Velocities 

Up Usa t Vesc 

Ganymede 13.06 10.88 2.74 
Callisto 13.06 8.19 2.45 
Titan 9.64 5.57 2.64 

perihelion distance of  the comet  in units of  the planet ' s  
semimajor  axis; and i is the inclination of the come t ' s  orbit 
f rom the p lanet ' s  orbit  plane. Circular orbits are assumed 
for both  satellite and planet. Equat ion (48) is an approxi-  
mation because  it neglects the relationship between im- 
pact  probabil i ty and impact  velocity.  In particular,  orbits 
with low impact  velocities tend to have high impact  proba- 
bilities; hence Eq. (48) overes t imates  v~m~. The magnitude 
of the overes t imate  is typically a few kilometers per sec- 
ond (see Shoemaker  and Wolfe 1982). In Table I we list 
re levant  pa ramete r s  for Ganymede ,  Callisto, and Titan. 
Velocities are given in ki lometers  per  second. In Table II 
we give the ex t reme  values ofv~ and Orm s for U r a n u s - N e p -  
tune planetesimals ,  Kuiper  belt comets ,  and Oort cloud 
comets .  These  velocities,  which were est imated using 
Eqs. (48) and (49), are shown only to illustrate the range 
of impact  velocities expected.  They are calculated for 
U - N  and Kuiper  belt planetesimals for 0 -< i --< 10 ° and 
a = 25 AU and a = 50 AU, respect ively;  the minimum 
impact  velocities occur  with p = 1 (perihelion at the 
planet),  and the max i m um  with p = 0. For  Oort cloud 
comets  we used a -- 20,000 AU;  the max imum impact 
velocities occur  with i = 180 ° (retrograde orbits) and p = 
l ,  and the minimum occur  with i = 0 ° and p = 1. 

What  we really need to determine F~ is the distribution 
of  impact  velocities.  To obtain this we must define the 
orbital distributions of  the potential impactors ,  and then 
determine the impact  velocity and impact  probabili ty as- 
sociated with each orbit. Accordingly,  we have written a 
compute r  p rogram to implement  the following algorithm: 

(1) First we select the heliocentric distributions of  a, p,  
and i for the impactors .  We assume the number  density 
n(a, p, i) da dp di ~ sin i d a  dp di, so that a is uniformly 
distributed be tween ami n and amax, p is uniformly distrib- 
uted between Pmin and Pmax, and cos i is uniformly distrib- 
uted for inclinations below/max" This inclination distribu- 
tion is uniform in solid angle be tween  the minimum and 
max imum values of  cos i. For  each orbit, we calculate v~ 
using Eq. (49). 

(2) We then consider  the c o m e t ' s  mot ion near  the 
planet. The value of v~. is the c o m e t ' s  only m e m o r y  of  
its previous heliocentric existence.  We must  determine 
which impact  pa ramete rs  b allow a comet  to impact  a 
satellite at a given orbital radius. For  simplicity, we ex- 
press the encounter  using units in which the satell i te 's  
semimajor  axis is 1. By conserva t ion  of  angular  momen-  
tum, bv~: = rt.)t, where vt is the tangential componen t  of  
the come t ' s  orbital velocity about  the planet  at distance 
r. Collisons are possible for any value of b f rom zero (a 
radial orbit) to bma x = rv/v~,  where v 2 = v~ + 2v2~,t is 
the come t ' s  total orbital velocity squared;  the latter case 
corresponds  to periapse at the satell i te 's  orbital radius. 
Thus /~ ,x  = 1 + 2V2sat/V 2. Since the gravity of  the planet 
has little effect on the comet  before it enters  the Hill 
sphere (for large v~), we assume that the distribution of  
impact  parameters  is uniform in area: n(b)db ~ bdb, or 
n(b 2) ~ d(b 2) between limits of  0 and/~a×. 

The relative velocity of  the comet  and satellite (ignoring 
the gravity of  the satellite for now) is 

v~el = [Vcom~t - Vsat[, (50) 

where the velocity vectors  of  comet  and satellite are 
Vcome t = (Ur ,  U t COS i ' ,  U t sin i ') and vsat = (0, v~at, 0), where 
v, = V~v  2 - v] is the come t ' s  radial velocity,  and i' is its 
inclination with respect  to the orbital plane of  the satellite. 
Simplifying Eq. (50), we obtain 

v;¢ I = v~ + 3v~t - 2 V t V s a  t c o s  i ' .  (51) 

TABLE II 
Impact Velocities on Satellites 

Semimajor axis 
inclinations 

Uranus-Neptune Kuiper belt Oort 

25 AU 50 AU 20,000 AU 
(0 < i <  10 °) (0 < i <  10 ° ) (0 < i <  180 ° ) 

O~ Urm s U~ Urm s U~ Orm s 

Ganymede 4.4-21.8 19.5-28.9 4.9-22.2 19.7-29.2 5.4-31.5 19.8-36.8 
Callisto 4.4-21.8 15.1-26.1 4.9-22.2 15.2-26.5 5.4-31.5 15.4-34.6 
Titan 2.6-15.6 10.3-18.5 3.3-16.2 10.5-19.0 4.0-23.3 10.8-25.4 
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The last assumption required is the distribution of i'. We 
make the crude assumption that the distribution is iso- 
tropic, i.e., that n(i') di '  a d cos i ' .  Even if the heliocentric 
inclinations, i, of the impactors are low, the distribution of 
i' will extend to higher values because of the gravitational 
deflection of the comets by the planet and the planet's 
non-zero obliquity. The assumption of isotropy roughly 
accounts for aberration effects which cause impact veloci- 
ties on prograde satellites to be somewhat lower at orbital 
longitudes on the sunward side of the planet, and higher 
at longitudes on the anti-sunward side (Cuzzi and Durisen 
1990). Our main results are not highly sensitive to the 
assumption of isotropy. 

(3) Finally, we treat the motion of the comet very near 
the satellite. In the two-body approximation, conserva- 
tion of energy gives the final impact velocity as 

2 = 2 O~s c = Vze + -- " Vimpac t Vrel + 2 3V2at 2VtVsa t COS l + Ve2sc 

2 2VtVsa t COS i ' .  Orm s --  (52) 

We then compute the distribution of impact velocities on 
a satellite numerically, instructing the computer to loop 
over the five varibles a, p, i, b, and i'. We weight the 
impact probabilities according to the formulation given by 
Shoemaker and Wolfe (1982). The collisional probability 
Pc is proportional to the factors 

( ( 2 
2V~at~ Vesc ~ U 

P c ~  1 + v~ ] l + v~ +-2V~at] U ~ s i n i ,  (53) 

where U and i are defined above, and Ux is the radial 
component of the dimensionless encounter velocity, 
U~ = 2 - 1/a - p(2 - p/a).  The first factor represents 
gravitational focusing by the planet, the second factor is 
gravitational focusing by the satellite (unimportant), and 
the third the relative overlap of the object's orbit with the 
(gravitationally enhanced) torus swept out by the planet. 

Using this formalism, we have computed impact veloc- 
ity distributions for U - N  planetesimals, Kuiper belt com- 
ets, and Oort cloud comets hitting Ganymede, Callisto, 
and Titan. We have assumed that perihelia are uniformly 
distributed between 0. I0 and 5.10 AU (Jupiter) and 5.30 
and 9.44 AU (Saturn); other parameters are listed in Table 
II. The perihelia for Saturn-crossers were chosen on the 
assumption that the perihelia must lie outside of Jupiter, 
because bodies on Jupiter-crossing orbits evolve rapidly 
into short period or long period cometary orbits. Median 
impact velocities for objects striking Titan, Callisto, and 
Ganymede are given in Table III. It is immediately appar- 
ent that there is little difference between Kuiper belt com- 
ets and U - N  planetesimals. Clearly once the semimajor 
axis is well outside the planetary orbit, it makes very 
little difference to the impact velocities. By contrast, Oort 

TABLE III 
Median Impact Velocities on Satellites 

U r a n u s - N e p t u n e  Kuiper  belt  Oort  

Ganymede  20.6 20.7 27.5 
Callisto 16.3 16.6 26.0 
Titan 11.1 11.3 19.1 

cloud comets generally have much higher impact veloci- 
ties. This is because of their generally higher inclinations, 
which we have assumed isotropic. 

Figure 6a shows the cumulative impact velocity distri- 
bution of U - N  planetesimals striking the three satellites. 
The corresponding plot for Kuiper belt comets is essen- 
tially indistinguishable, and so will not be presented here. 
It would appear that impact erosion by either class of 
object can explain the differences between Titan and Cal- 
listo if 10 ~< vc ~< 14 km/sec. Impact velocities by Oort 
cloud comets, Fig. 6b, are higher, yet still show a signifi- 
cant low impact velocity tail. 

5.5. v,, 

We will idealize the impact of comets on icy satellites 
as the impact of water ice projectiles on water ice targets. 
Water is sufficiently abundant that it should dominate 
impact-generated vapor clouds at the relatively low im- 
pact velocities that are of interest here. As discussed 
earlier, Melosh and Vickery suggested that the minimum 
impact velocity for atmospheric erosion for identical im- 
pactor and target materials is 

v,, = 2X/V2sc + 2Lva p, (1) 

where Lva p = 3 × l010 erg/g is the latent heat of vaporiza- 
tion for water. Titan, Ganymede, and Callisto all have 
escape velocities of - 2 .6  km/sec. For an icy body im- 
pacting an icy surface, Eq. (1) predicts that the threshold 
velocity for escape would be just - 7  km/sec. 

However, Eq. (1) cannot be the whole story. Equation 
(1) assumes (i) normal impact; (ii) that the internal energy 
deposited by the shock is divided between the energy 
needed to vaporize the shocked material and sensible 
heat, and that all of the latter remains in place as thermal 
energy of the vapor; (iii) that there is no mixing of the 
hottest vapors with cooler vapors produced from more 
distant parts of the shocked target; and (iv) that the latent 
heat of condensation is unavailable to the expanding vapor 
plume (i.e., the vapor does not condense). The first three 
assumptions overestimate the thermal energy of the va- 
por, since (i) peak shock pressures are lower for oblique 
impacts (in an oblique impact it is the normal component 
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FIG. 6. Impact velocities of stray Uranus-Neptune planetesimals (a) and Oort cloud comets on Ganymede, Callisto, and Titan. Impact velocities 
of Kuiper belt comets are very similar to U - N  planetesimals. 

of  the impact velocity that matters most; since the most 
probable impact angle is 45 °, Eq. (1) may on average 
underest imate v ,  by a factor V~) ;  (ii) a fair fraction of 
the internal energy deposited by the shock is reversibly 
stored in the compressed material, to be returned as use- 
ful work (in this case, excavation) upon decompression 
(Zel 'dovich and Raizer 1967, pp. 762-770); and (iii) there 
will be mixing. These effects are partially offset by the 
fourth assumption, since in practice it must be expected 
that some of  the steam produced by the impact does con- 
dense relatively quickly. 

A wholly reliable measure of  v,. would require an accu- 
rate, comprehensive ,  numerical simulation of  the crater- 
ing process with good equations of state. If we are willing 
to sacrifice some reliability, a usable rough estimate for 
the thermal energy of  an impact-generated vapor cloud 
can be developed from arguments given elsewhere by 
one of us (Zahnle 1990). Following a simple argument 
for crater-scaling given by Davies (1985), the 
Schmid t -Housen  (1987) and Schmidt -Holsapple  (1982) 
relations for scaling crater  diameter  with impact parame- 
ters (in the large crater  limit in which gravity dominates) 
can be cast in terms of  the fraction h of internal energy 
deposited by the shock which remains behind as heat (0 
< h < 1). The essence of the argument is the assumption 
that all the kinetic energy and a fraction 1 - h of the 
internal energy are available for  further propagation of the 
shock, the kinetic energy as ram pressure (because the 
shock decelerates,  the previously shocked material 
catches up) and I - h of  the internal energy from the 
elastic part of  decompression and to a lesser extent  from 
thermal pressure.  Note  that we are interested not in the 

thermal energy immediately behind the shocked but in- 
stead in the thermal energy remaining after the shocked 
material has fully contributed to the further  propagation 
of the shock. At this point the shocked material is no 
longer descending rapidly into the planet, but rather  would 
be expected to have a center  of  mass velocity comparable  
to that of the excavat ion flow, i.e., probably no more than 
about one or two kilometers per second. In terms of h, 
the modified form of  Eq. (1) is 

v< = @hh X/u~sc + 2Lvap' (54) 

The parameter  h is related to Schmidt and Housen ' s  pa- 
rameter  tx by h = 2 - 3IX. An upper bound on v,. might be 
set by multiplying the above by V ~  to account  for obliq- 
uity. On the other  hand, if the vapor  condenses  the latent 
heat of condensation can also contribute to expansion; 
accordingly, a lower bound on v,. is 

2 
v*  = - - 7  v0,c. (55)  

V h  

This latter expression is clearly too low if v~¢ >~ Lva p, 

since it makes no allowance for the energy needed to 
vaporize water in the first place. An estimate for the mini- 
mum impact energy needed to completely vaporize the 
impactor is (Zahnle 1990) 

4 LX~v~p ' (56) Uva p ~ ~ / ~  
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calculations shown are for Titan, but are essentially the same for Callisto 
or Ganymede. 

This expression, which through h implicitly allows for 
crater formation, is derived on the assumption that the 
threshold for vaporization is defined by the decompres- 
sion adiabat of the shocked material passing through the 
critical point (Zel'dovich and Raizer 1967, pp. 762-770). 
Hotter release adiabats correspond to final states that are 
predominantly vapor; cooler adiabats correspond to final 
states that are mainly condensed phases. Zel'dovich and 
Raizer (1967) note that, in general, the thermal energy of 
vapor at the critical temperature is roughly equal to the 
latent heat of condensation at low temperature; i.e., com- 
plete shock vaporization requires that the shock deposit 
roughly twice the latent heat of vaporization. A more 
accurate estimate is Ovap = 7.9 km/sec at 263 K (McKin- 
non, personal communication); according to Eq. (56) this 
would correspond to h = 2/3 if taken at face value. 

In Fig. 7 we show vc, v*, and Vvap for water ice impacts 
on an icy Titan as functions of the parameter h. These 
have not been corrected for obliquity, which would raise 
all three curves. The corresponding curves (not shown) 
are very similar for Callisto and Ganymede. Notably, 
values of Ovap given by Eq. (56) and oc given by Eq. (54) 

are nearly the same, while v* given by Eq. (55) is much 
lower. Because the latter is inconsistent with our pre- 
sumption that the impactor is completely vaporized, we 
prefer the higher values of vc. 

What h should be in a strong shock is unclear. The 
Schmidt-Housen relation (for impact on a nonporous tar- 
get; specifically, water-saturated sand) is equivalent to 
h = 1/3, and its predecessor, the Schmidt-Holsapple rela- 
tion (porous target; dry sand), is equivalent to h = 4/5. A 
third choice can be derived from the observation that 
postshock particle velocities follow a power law in dis- 
tance from the point of impact, u oc r-~.87_~0.05 (Melosh 
1989, p. 66). This is equivalent to h = 0.40 -+ 0.05 (Zahnle 
1990). For the relatively large impacts of most interest 
to us, which excavate well below the porous regolith, 
porosity of the target material is likely to be relatively 
low. On the other hand, the porosity of the impactor may 
be rather high. Use of h = 1/3 would raise the threshold 
impact velocity for atmospheric cratering to -12  km/sec, 
a value that should probably be regarded as an upper limit. 
A useful lower limit is obtained for h = 4/5, which gives 
vc = 9.0 km/sec. Maximal equivocation is ensured by 
taking h = 1/2. 

Figure 8a shows Fx(h ) obtained using Eq. (54) for vc(h) 
for Ganymede, Callisto, and Titan when the impactors 
are U-N planetesimals (the impact velocity distributions 
shown in Fig. 6a). Figure 8b is the analogous figure using 

* given by Eq. (55). In either case, results for Kuiper Uc 
belt comets are similar. Figure 8c shows F x for Eq. (54) 
for vc for Oort cloud comets. Some representative values 
are listed in Table IV for U-N planetesimals and Oort 
cloud comets. 

Given values of F x appropriate to Callisto and Titan, 
Eq. (47) is solved for y. Figure 9 shows the minimum 
atmophile content y for which an atmosphere can develop 
around Titan and Callisto as a function of q. These are 
calculated for U-N planetesimals and vc using the cases 
listed in Table IV; the analogous curves for Kuiper belt 
comets are essentially indistinguishable. The correspond- 
ing curves for Ganymede are not shown; its chances of 
getting an atmosphere are much worse than Callisto's. 
The best case for Callisto nearly coincides with the worst 
case for Titan. It is apparent that Callisto has no real 
chance of accumulating an atmosphere unless the highest 
estimate for o~ is adopted (low h) and q is either very 
high or very low. Titan, by contrast, would develop an 
atmosphere for any q if our higher estimates for vc per- 
tained; and would stand a fair chance of developing one 
for the lowest given a low value of q. 

The expansive error bars mark the approximate posi- 
tion of long period comets on Fig. 9. The higher point 
treats carbon as an atmophile; the lower point is for nitro- 
gen alone. The mass distribution of comets is quite uncer- 
tain. Long period comets are assigned the nominal value 
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FIG. 8. The parameter Fx, the fraction of impactors striking Ganymede, Callisto, and Titan with (a) impact velocities less than v, (top curve 
in Fig, 7), as calculated for Uranus-Neptune planetesimals; (b) impact velocities less than v* (bottom curve in Fig. 7), also for U - N  planetesimals; 
and (c) impact velocities less than v~ for Oort cloud comets. 

q = 1.71. Short period comets ,  which may derive from 
and which provide the principle evidence for a Kuiper 
belt (Duncan e t  al .  1988), appear to be described by a 
lower value o f q  ~ 1.5 (e.g.,  Donnison 1986). The possible 
connect ion between the hypothetical Kuiper belt and 
short period comets  is obviously  germane to our discus- 
sion. If this lower value of q is used, it is much easier for 
Titan to accumulate an atmosphere, and an atmosphere 
for Call isto--particularly if carbon-based- -becomes  a 
distinct possibility. 

The differences between the three satellites are largest 
for small values of q, and vanish as q---* 2. The differences 

are large at small q because the primary source of the 
atmosphere is the occasional  large impact that hits slowly 
enough not to blow itself into space. The relative fre- 
quency of such slow impacts is proportional to F x. The 
convergence of the models as q ~ 2 was alluded to earlier 
in the discussion concerning Fig. 4: as q --~ 2, the major 
source of the atmosphere shifts from large impactors to 
impactors too small to cause atmospheric cratering. Un- 
like the large impactors, which supply volatiles only if 
they hit at low velocity,  the small impactors all contribute 
their atmophiles to the atmosphere regardless of  impact 
velocity• Thus as q ~ 2 the source becomes independent 
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vc given by Eq. (54) v* given by Eq. (55) 

h = 0 . 3 3  h =0 .5  h =0 .8  h =0.33 h = 0 . 5  h = 0 . 8  

Ganymede 0.028 
Callisto 0.12 
Titan 0.79 

Ganymede 0.016 
Callisto 0.029 
Titan 0.21 

Uranus-Neptune planetesimals 
O.0029 0 O.OO04 
0.039 0.0076 0.015 
0.37 0.11 0.22 

Oort cloud comets 
0.0042 0.0005 0.002 
0.0084 0.0015 0.003 
0.081 0.021 0.045 

0 0 
0.0028 0.0001 
0.073 0.016 

0.0002 0 
0.0005 0 
0.013 0.0023 

of F x, and the differences between Callisto and Titan 
disappear as well. 

5.6. Two  Sensi t iv i ty  Tests  

Until now, we have assumed that when atmospheric 
cratering takes place, the impactor also escapes, leaving 
none of itself behind. Thus an efficient atmospheric crater- 
ing regime (Fn --~ 1) is at the same time a poor accumulative 
regime (F x ~ 1), and vice versa. Both effects contribute 
to the potential instability of a coaccreting atmosphere; it 
is not obvious a priori which is more important. Nor, for 
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FIG. 9, Like Figs. 4 and 5, but with impactor atmophile content y 
as the dependent variable. The different curves, which are labeled by 
the parameter h, use values of F x appropriate to Titan and Callisto. 
Atmospheres accumulate above the curves. The most optimistic as- 
sumption (h = 1/3) for Callisto roughly coincides with the most pessimis- 
tic (h = 4/5) for Titan. The expansive error bars mark the approximate 
position of comets on this plot. The higher point treats carbon as an 
atmophile; the lower point is for nitrogen alone. 

that matter, is it entirely obvious that all the material 
deriving from the impactor necessarily escapes in an at- 
mospheric cratering event. It is for this reason, primarily, 
that we have formally retained separate identities for F× 
and F , ;  now we will exploit this. 

An interesting sensitivity test that isolates the effect of 
atmospheric cratering is to assume that all the volatiles in 
all the impactors are retained, whether or not atmospheric 
erosion takes place. This can be done relatively simply, 
by arbitrarily setting F x = 1 while leaving Fn adjustable. 
As an assumption this is at least as extreme as complete 
escape in atmospheric cratering events, but it is analyti- 
cally tractable. With F x = I, Eq. (47) for the critical values 
of F ,  and y reduces to 

F n ( 2 - q ) { ~ o ( ~ ) } Z - q = y  q-~. (57) 

The consequences of this equation are displayed in Fig. 
I0. The figure was prepared specifically for Titan; compa- 
rable figures for Ganymede and Callisto are essentially 
identical. To facilitate comparison with our standard 
model (Fig. 4), we have plotted the quantity 1 - Fn rather 
than the critical value of Fn itself. In both figures, an 
atmosphere accumulates if the parameters q and 1 - F ,  
( = F  x in Fig. 4) describing the velocity and mass distribu- 
tions of the impactors plot above the curve labeled with 
the relevant value of  y; i.e., atmospheres accumulate 
above the curves. Figure 10 shows that, no matter how 
efficiently impacting volatiles are retained, unless the im- 
pactors are atmophile-rich or q low, impact erosion pre- 
vents the accumulation of an atmosphere. For  Callisto 
and Ganymede,  where it is very likely that 1 - Fn ,~ 1, 
this means that for q ~ 1.7 (the present best estimate for 
comets), the impactors would still need to have y > 0.01 
for an atmosphere to accumulate,  even with the most 



20 ZAHNLE ET AL. 

i i  i 
v 

o 
"5 
t~ 
o .  
E m 
> 

o 
uJ 

o 
Z 

"5 
t- 
O 
"5 

i i  

0 . 8  

0.6 

0 . 4  

0.2 

0 
1 .4  2 

y = .001 

y = . 0 1 ~  
......... y = .03 

I / /  / ~ ~ "x\ /111 
] ," ', 

. . . . . . .  I , , / 11 . . . .  (':i'"'", , I , ,"; , 

1.5 1 .6  1 .7  1 .8  1 .9  

P o w e r  L a w  E x p o n e n t  q 
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velocity, thereby isolating the role of impact erosion. 

An alternative view of atmospheric cratering, proposed 
by Ahrens and O'Keefe (1987), treats the impact as a 
massless point explosion at the base of an exponential 
atmosphere. The proposed analogy to a bomb has some 
drawbacks, the most important of which is that impacts 
are anything but massless (the snowplow analogy used in 
the tangent-plane approximation can be considered its 
antithesis), but a result from that model may be useful in 
placing a lower bound on escape. Ahrens and O'Keefe find 
that, as with the tangent-plane model, there is a maximum 
amount of atmosphere that can escape in an explosion, 
but this maximum is much less than the atmosphere above 
the horizon. In particular, they state that a strong explo- 
sion can remove at most -10  -5 of Earth's present atmo- 
sphere, only about 1/60 th of the atmosphere above the 
tangent plane. Ahrens and O'Keefe employ a semianalyti- 
cal model in which the relevant expressions are cast in 
terms of a dimensionless distance normalized to the scale 
height. Because the mass of air that escapes is propor- 
tional to the cross-section of the escaping volume, it fol- 
lows that escape scales as H 2, and therefore that ~:0 can 
be approximated by 

6H 2 
~:0 ~" R 2 .  (58) 

optimistic assumption regarding atmophile retention. Re- 
ality probably lies somewhere between the results shown 
in Figs. 4 and 10. We must conclude, somewhat paradoxi- 
cally, that accretion of a late volatile-rich veneer of outer 
Solar System material would have tended to prevent 
Ganymede and Callisto accumulating atmospheres, or re- 
taining any early atmospheres they may once have had. 

However, this is not the whole story for Ganymede and 
Callisto. We showed in Fig. 2 that during accretion of 
a late veneer a thin atmosphere is expected. This thin 
atmosphere is the equilibrium between atmophile expul- 
sion and delivery, and vanishes as the impact flux de- 
clines. Its thickness for a given point in accretion can be 
calculated as a function o f f  x and y using Eq. (35) for q = 
3/2 or Eq. (46) otherwise. It is predicted to be thicker for 
Callisto than for Ganymede. 

A second test is to ask how sensitive our results are 
to the tangent-plane approximation. In the tangent-plane 
approximation the escaping gas is mainly that within a 
few degrees of the horizon. Escape therefore depends on 
the assumption that the ejecta follow radial or descending 
trajectories. If on the other hand the trajectories tend to 
refract upward, as they do for shocked gas in the case of 
the massless point explosion (Ahrens and O'Keefe 1987), 
much of the atmosphere near the horizon might not be 
swept to space, and the tangent-plane approximation 
would greatly overestimate the amount of air expelled by 
impacts. 

For Titan, this is about 9% of the atmosphere above the 
horizon. Lest there be any confusion, it should be empha- 
sized that we are not here attempting to fully implement 
the AOK algorithm. The latter requires expressing an 
impact as an equivalent bomb, which, if possible, is not 
straightforward. Instead we have only used AOK to pro- 
vide an alternative estimate for the maximum amount of 
air that can be expelled by an impact. Because this is less 
than in the tangent-plane approximation, the mass of the 
threshold impactor to effect erosion should be scaled 
down proportionately. Therefore we can continue to take 
m, = s%MY a, which leaves the relevant equations devel- 
oped in the previous sections changed only by the value 
of (0. 

In Fig. 11 we compare thresholds for the accumulation 
of an atmosphere in the tangent-plane model to the corre- 
sponding thresholds implied by Eq. (58). The figure is 
analogous to Figs. 4 and I0. Obviously the lower rate of 
impact erosion improves prospects for accumulating an 
atmosphere, particularly for smaller values of q and larger 
values of y, but for our nominal choice of q ~ 1.7 the 
differences are not so large as to change things qualita- 
tively: it is still difficult for Callisto to get an atmosphere, 
and well-nigh impossible for Ganymede to get one. 

6. SOME ADDITIONAL OBSERVATIONS 

For the analytical treatment developed here it is implic- 
itly assumed that impacts are numerous enough to justify 
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FIG. 11. Another sensitivity test, also to be compared to Fig. 4. 
Here it is assumed that the maximum loss of atmosphere in an impact 
is about 6H2/R 2 of the atmosphere above the tangent-plane. This upper 
limit is consistent with the upper limit for atmospheric escape calculated 
by Ahrens and O'Keefe (1987) for a massless point explosion. 

treating the mass and velocity distributions of the im- 
pactors as continuous functions. Similarly, any variations 
in impactor volatile content are assumed to average out. 
Inevitable stochastic fluctuations in these parameters are 
ignored. These should be good approximations for im- 
pactor distributions in which small objects are well repre- 
sented by mass (i.e., those distributions with q > 1.8), 
since for these distributions numerous small impacts con- 
trol both the loss and the supply of atmophiles. But for 
smaller values of q infrequent large impactors are the main 
source of volatiles. Stochastic fluctuations on the supply 
side can then be important and, when so, the effect is not 
necessarily symmetrical. In particular, it is imaginable 
that a late, low velocity impact of a large, volatile-rich 
object could unjustly parachute a planet into the invulner- 
able region of Fig. 2a. This scenario is unlikely for Titan, 
where the atmosphere is so enormous that luck would 
need have been embodied as an object bigger than - 3  x 
10 23 grams, nor has chance availed Callisto or Ganymede, 
but it is a possibility for Mars. Monte Carlo simulations 
should help clarify the role of luck in determining the 
present distribution of planets and atmospheres. 

The atmospheres of Triton and Pluto appear to have the 
same basic compositionmmainly N2 with s o m e  C H 4 i a s  

Titan's. This is a mild surprise in the standard model, 
since Titan's history is thought to differ radically from 
Triton's or Pluto's. In the standard model Titan accumu- 

lated from material that condensed in the Saturnian sub- 
nebula, while Pluto and Triton accumulated directly from 
solar nebular condensates. Systematic bulk compositional 
differences are expected and observed: Triton and Pluto, 
both of which have densities o f - 2 . 1  g/cm 3, are denser 
than Titan, Ganymede, and Callisto, which have densities 
of -1 .9  g/cm 3. The compositional difference is actually 
bigger than this, owing to the presence of ice II in the 
larger bodies. But these systematic compositional differ- 
ences are not reflected in their atmospheres. 

According to the arguments developed in this paper, 
Triton and Pluto might both be expected to have atmo- 
spheres. Because they are both thought to have accumu- 
lated in free space at distances comparable to the U-N 
planetesimals, neither would have been subject to the 
systematically high impact velocities seen by the Galilean 
satellites. Even after capture, Triton saw significantly 
lower impact velocities than Titan, since it has a lower 
orbital velocity (4.4 km/sec vs 5.6 km/sec) and its im- 
pactors smaller vs. This argument is compromised by 
Triton's low escape velocity (Ve~c = 1.45 km/sec, Stone 
and Miner 1989): impact velocities on Triton are low 
enough that the presumption of substantial impact vapor- 
ization of water is probably violated for impacts that 
would otherwise be expected to expel atmosphere. Dis- 
cussion of Triton is also complicated by the tendency of 
nitrogen to condense at this distance (it is much easier to 
retain condensed volatiles), and by the doubtful relevance 
of U-N planetesimals to post-capture Tritonian impacts. 
A more straightforward argument is that, as alluded to 
earlier, Triton and Pluto may themselves be representive 
of the veneering objects that gave Titan its atmosphere, 
in which case the composition of their atmospheres is 
axiomatic. 

Another hint of an impact origin of Titan's atmosphere 
is that the D/H ratio on Titan is similar to that of Earth, 
Mars, carbonaceous meteorites, and Halley (Owen et al. 
1986, de Bergh et al. 1989, Coustenis et al. 1989). In the 
standard model methane forms from reaction of subnebu- 
lar hydrogen with CO, a reaction sped by the relatively 
high temperatures and pressures expected in the subnebu- 
lar disk. According to Prinn and Fegley (1989), methane 
formation in the Jovian subnebula occurs at a pressure of 
order 1 bar and at a quench temperature of -800 K; the 
required conditions in the Saturnian subnebula would not 
be very different. The high temperature ensures that sub- 
nebular methane acquires a roughly cosmic D/H ratio, 
which it should still have on Titan (and does have on 
Jupiter and Saturn). In the veneer model Titanian methane 
would be expected to have the composition of the im- 
pactors, as observed. 

It is conceivable that Titanian methane could acquire 
the D/H ratio of water ice by reactions in Titan (D. J. 
Stevenson, personal communication). Such might be the 
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expected consequence of mixing impact-generated 
plumes of hot water vapor with atmospheric or oceanic 
methane. This does not necessarily compromise the late 
veneer hypothesis, because in any event Titan's outer- 
most 30 km or so would be exogenic if the late veneer 
is to supply the atmospheric nitrogen inventory. Crustal 
cometary ice presumably would also exhibit the Ur- 
ano-Neptunian D/H signature. If on the other hand atmo- 
spheric D/H has equilibrated with deep, innately Titanian 
ice, the implication would be that Titan is fundamentally 
nonsolar. This would bode ill for the conventional warm 
subnebula, since the high temperatures and presures 
needed to synthesize methane from carbon monoxide de- 
mand that subnebular water acquire cosmic D/H. A cold 
subnebula--e.g., one in which water ice is never vapor- 
ized--would not be ruled out, but a cold subnebula would 
not offer a plausible site for methane or ammonia synthe- 
sis. Also, a cold subnebula is rather subversive, since the 
existence of the subnebula presumes that the solids in the 
regular satellite system condensed from the subnebula; 
there is no call for a subnebula if the solids are imported 
intact from outside. 

The apparent absence of carbon monoxide atmospheres 
in the modern Solar System poses something of a problem. 
Of course this problem is not unique to the veneer model 
for Titan's atmosphere, since it is an apparently inevitable 
result of high speed impacts (which are not banished in 
the standard model), yet a problem it remains. We cannot 
here resolve it. But we remind the reader that carbon 
monoxide is not an especially stable substance. As a major 
atmospheric constituent it is at best metastable. It is sub- 
ject to photochemical destruction, and its disproportiona- 
tion under pressure or at low temperatures is prevented 
only by kinetic barriers. The main reason that CO is some- 
times considered a potential major atmospheric constit- 
uent in the modern Solar System is that the key reaction 
(or reactions) that destroy it have yet to be identified. In 
our opinion this is but a matter of time. 

7. CONCLUSIONS 

The present distribution of atmospheres between Ga- 
nymede, Callisto, and Titan can be explained by the com- 
petition between impact erosion and impact supply of 
atmophile-rich late veneers. Lower impact velocities on 
Titan, due in part to Saturn sitting less deeply in the Sun's 
gravitational well and in larger part to Saturn's being much 
less massive than Jupiter, allowed Titan to accumulate an 
atmosphere while its Jovian cousins Callisto and Ga- 
nymede remained barren. Our model requires that the 
threshold impact velocity for atmospheric cratering by icy 
impactors be in the range of 10-14 km/sec. Although this 
velocity range is somewhat higher than that predicted by 
Melosh and Vickery's criterion, it agrees reasonably well 

with the implications of Schmidt-Housen crater energy- 
scaling for nonporous targets. The present mass of Titan's 
atmosphere falls within the acceptable range of veneers, 
although tending perhaps to the high side. An intrinsic 
nitrogen abundance on the order of 1% (or more) appears 
to be required of the impactors. Owing to relatively low 
impact velocities on Titan, the most agreeable candidate 
objects for the proposed veneer are Uranus-Neptune 
planetesimals or (hypothetical) Kuiper belt comets. This 
version of the late volatile-rich veneer model naturally 
accounts for the observation that Titan's D/H ratio is 
similar to those of Earth, meteorites, and comets, and 
dissimilar to those of Jupiter and Saturn. It also accounts 
for the compositional similarity of Titan's atmosphere 
to Triton's and Pluto's, despite their radically different 
histories and bulk compositions. 
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